Modern leather industries are focused on producing high quality leather products for sustaining the market competitiveness. However, various leather defects are introduced during various stages of manufacturing process such as material handling, tanning and dyeing. Manual inspection of leather surfaces is subjective and inconsistent in nature; hence machine vision systems have been widely adopted for the automated inspection of leather defects. It is necessary develop suitable image processing algorithms for localize leather defects such as folding marks, growth marks, grain off, loose grain, and pinhole due to the ambiguous texture pattern and tiny nature in the localized regions of the leather.This research presents deep learning neural network-based approach for automatic localization and classification of leather defects using a machine vision system. In this work, popular convolutional neural networks are trained using leather images of different leather defects and a class activation mapping technique is followed to locate the region of interest for the class of leather defect. Convolution neural networks such as Google net, Squeeze-net, RestNet are found to provide better accuracy of classification as compared with the state-of-the-art neural network architectures are compared in this results.
999,000 تومان199,800 تومانبن تخفیف
زمان تحویل: آنی
درخواست شما ابتدا بررسی شده و در صورتی که قابل حل باشد قیمت گذاری می شود. پس از پرداخت ارسال خواهد شد.
برای بدست آوردن لینک کتاب:
عنوان کتاب مد نظر را در گوگل سرچ کنید. سپس یک لینک از کتاب در گوگل بوک، آمازون و یا دیگر فروشگاه های کتاب را در ایبوک رالی سفارش دهید.
در صورتی که لینکی از کتاب پیدا نکردید:
عنوان کتاب را وارد کنید. برای جلوگیری از اشتباه، در توضیحات درخواست حتما مشخصات دقیق کتاب درخواستی را وارد کنید. (در صورت امکان isbn کتاب و یا سال چاپ را هم وارد کنید.)